
Abstract. A simple and variationally stable quasi-rela-
tivistic method based on a modified low-order (LO)
approximation to the normalized elimination of the
small component (NESC) method is presented. The
modification of the original LO-NESC scheme implies
the use of an energy-independent factor in the relativistic
correction to the potential energy. This factor cuts off
the potential energy at short distances from the nucleus
and in this way restores the variational stability of LO-
NESC. The new method, dubbed LO-NESC-effective
potential (EP) was tested in calculations on one-, two-
and many-electron atoms. The LO-NESC-EP can be
easily implemented into the existing nonrelativistic
quantum-chemical program codes because its Hamilto-
nian matrix can be expressed entirely in terms of the
integrals appearing in a nonrelativistic calculation.
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1 Introduction

Despite the importance of relativity for the chemistry of
heavy elements [1, 2, 3] all-electron relativistic quantum-
chemical calculations still remain quite uncommon. Few
research groups can afford to do all-electron Dirac–
Hartree–Fock (DHF) [4] or post-DHF [5, 6] calculations
on larger chemical systems. An obvious reason for this
fact is the high computational cost of calculations based
on the four-component Dirac formalism. Despite enor-
mous progress in the development of relativistic and
quasi-relativistic quantum-chemical methods during the
last few decades [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20] there is still a need for the development of

simple, yet effective, approximate computational
schemes for all-electron relativistic calculations.
The major step in such a development is the reduction

of the full four-component formalism to a two-compo-
nent or a one-component form [7]. The various
approaches proposed in this connection are the Douglas–
Kroll–Hess (DKH) method [8, 9, 10], the zero-order
regular approximation (ZORA) [11, 12, 13], the rela-
tivistic elimination of the small component (RESC) [14],
the normalized elimination of the small component
(NESC) [15], etc. Various perturbational approaches
which expand the full four-component Dirac Hamilto-
nian in powers of 1/c2 have also been developed [16].
The DKH method relies strongly on the resolution of

the identity when calculating the matrix elements of the
Hamiltonian and sometimes this method can yield
counterintuitive results, for example, lower total energies
with smaller basis sets [9]. The ZORA method overes-
timates the relativistic energy correction for the inner-
most electrons by almost a factor of 2 [13]. Furthermore,
it is difficult and so far an unsolved problem to represent
the matrix elements of the ZORA Hamiltonian in ana-
lytic form [13, 17]. The RESC method is variationally
unstable in the sense that the tight basis functions
needed to describe the correct behavior of the relativistic
wavefunction near the atomic nucleus lead to a varia-
tional collapse [18].
The NESC approach [15] is free of such drawbacks;

however, it is still computationally demanding because it
employs an energy-dependent relativistic metric which
makes a four-index transformation of the electron-
repulsion integrals mandatory for each self-consistent
cycle [15]. A low-order (LO) approximation [19] (correct
to order 1/c2) toNESC avoids using the energy-dependent
metric. Such an approximation is free of the pathologi-
cally divergent operators appearing in the Breit–Pauli
quasi-relativistic Hamiltonian and might be expected to
be stable in variational calculations [19]. Nevertheless, the
originally proposed LO-NESC (dubbed NESCU=I [19])
method failed to be stable in actual variational calcula-
tions on atomic and molecular systems and was
abandoned despite its appealing features [19].
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Beside the aforementioned difficulties, all the quasi-
relativistic approaches currently available suffer from
the fact that they are not well suited for implementation
within existing nonrelativistic quantum-chemical com-
puter codes. For example, (quasi-)relativistic methods
require the calculation of molecular integrals not needed
for a nonrelativistic quantum-chemical calculation. The
lack of highly efficient algorithms easy to implement in
nonrelativistic computer programs still hinders the ap-
plication of relativistic quantum-chemical approaches
on a larger scale.
It is a primary goal of the current work to set up a

computationally efficient quasi-relativistic method which
can be easily incorporated into existing quantum-chemi-
cal programs without changing larger parts of the original
software. In this respect, it seems tempting to revisit the
LO-NESC. This approximate scheme possesses highly
attractive features when including relativistic effects into
nonrelativistic methods, in particular as unusual molec-
ular integrals are not needed when calculating the Ham-
iltonian matrix elements of the LO-NESC approach. The
major problem of the LO-NESC method is its variational
instability in the sense that itsHamiltonian is not bounded
from below. It is demonstrated in Sect. 2 that with a slight
modification of the original approximate scheme the
variational stability is restored. For this purpose the rel-
ativistic correction is modified by the use of an effective
(energy-independent) potential-energy function depend-
ing on a cutoff factor. This factor regularizes the relativ-
istic correction to the nuclear–electron attraction in the
close vicinity of the nucleus, thus taking care of the fact
that in this region the exact nuclear–electron attraction is
considerably weaker than can be expressed with an ap-
proximate linear operator. In the current work, the cutoff
factor was parameterized utilizing results of the four-
component relativistic calculations of hydrogen-like
atomic ions. Benchmark calculations on atomic and
molecular systems performed with the proposed method
are compared with available literature data in Sect. 3.

2 Theory

2.1 Method

Solution of the Dirac equation (Eqs. 1, 2),

ðV � EÞWL þ cðr � pÞWS ¼ 0 ; ð1Þ

cðr � pÞWL þ ðV � E � 2mc2ÞWS ¼ 0 ; ð2Þ
leads to the four-component Dirac wavefunction [20]

WD ¼ WL

WS

� �
, where YL is the large and YS the small

component of the Dirac wavefunction, V is the potential,
r is the vector of the Pauli matrices [21], r ¼ (rx, ry, rz),
p ¼ �i�hr is the momentum operator, c is the velocity of
light, and m is the electron mass.
The NESC method of Dyall [15, 19, 22] is based on

the replacement of the small component, YS, in Eqs.
(1, 2) by the pseudolarge component [22], FL:

WS ¼
ðr � pÞ
2mc

UL: ð3Þ

With the help of Eq. (3) the Dirac equation (Eqs. 1,
2) is modified to Eqs. (4) and (5),

T̂TUL þ V WL ¼ EWL ; ð4Þ

T̂TWL þ
1

4m2c2
ðr � pÞðV � EÞðr � pÞUL ¼ T̂TUL ; ð5Þ

where T̂T is the kinetic energy operator,

T̂T ¼ p2

2m
¼ ðr � pÞðr � pÞ

2m
: ð6Þ

The elimination of FL from Eqs. (4, 5) is accom-
plished [15] with the help of Eq. (7),

UL ¼ ÛUWL ; ð7Þ
which connects the large and the pseudolarge compo-
nents of the modified four-component wavefunction
with the help of a nonunitary operator, ÛU . On premul-
tiplying Eq. (5) by ÛU y, replacing FL according to
Eq. (7), and adding to Eq. (4), one gets Eq. (8), which
depends on the large component only [15]:

T̂T �ðÎI�ÛU yÞT̂T ðÎI�ÛUÞþV þ 1

4m2c2
ÛU yðr �pÞV ðr �pÞÛU

� �
WL

¼E 1þÛU yT̂T ÛU
2mc2

� �
WL : ð8Þ

In Ref. [15], the nonunitary energy-dependent oper-
ator, ÛU of Eqs. (7) and (8) is expressed in a matrix form
suitable for finite-basis calculations. It possesses the
property expressed in Eq. (9):

ÛU ¼ ÎI þ oð1=c2Þ ; ð9Þ
where ÎI is the identity operator.
As follows from Eqs. (1), (2), and (3), the compo-

nents of the modified Dirac wavefunction satisfy
Eq. (10) [22],

ðr � pÞWL ¼ 1þ E � V
2mc2

� ��1
ðr � pÞWL ; ð10Þ

which is analogous to the relation connecting the large
and small components of the originalDiracwavefunction.
The NESC master equation (Eq. 8) is equivalent to

the Dirac equation projected onto the set of positive
energy states [15]; thus, there is no danger of obtaining
the negative energies E<)2mc2 from Eq. (8). For
brevity, the subscript L, which labels the large compo-
nent, is dropped in the following.
The major drawback of Eq. (8) is the dependence of

the operator ÛU on the energy eigenvalues. However, the
property (Eq. 9) of the operator ÛU enables one to define
[19] a LO approximation to Eq. (8) defining the NESC

method. Thus, by setting ÛU ¼ ÎI one gets Eq. (11) from
Eq. (8); Eq. (11) is correct to the order of 1/c2 and no
longer contains energy-dependent operators [19]:

T̂T þ V þ 1

4m2c2
ðr � pÞV ðr � pÞ

� �
W ¼ E 1þ T̂T

2mc2

� �
W :

ð11Þ
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Equation (11) contains LO relativistic corrections to
both the Hamiltonian operator and the metric of Y. As
has been shown [19], the relativistic metric of Eq. (11)
helps to avoid the pathological mass-velocity and Dar-
win terms of the Pauli approximation; hence, Eq. (11)
can be used in a quasi-variational calculation [19], while
any approach based on the Pauli Hamiltonian requires
the use of perturbation theory. However, the actual
stability of Eq. (11) in variational calculations depends
on the potential, V. For the potential V ¼ )Z/r of a
point nucleus, the third term in parentheses on the left-
hand side (lhs) of Eq. (11) diverges as )Z/r3 at short
distances from the nucleus and prevails over the kinetic
energy term. Even the use of the potential of a finite
nucleus (with nuclear radius obtained from experimental
data) does not help to overcome the problem [19]. When
calculating hydrogen-like atomic ions with Eq. (11) and
a single s-type Gaussian trial wavefunction, the optimal
value of the Gaussian exponent was obtained to be in-
finite [19]. According to Dyall [19] the kinetic energy and
the potential energy are disbalanced and this is suspected
to be responsible for the variational collapse of the
LO-NESC approximation (see also the Appendix).
Closer inspection of Eq. (8), however, suggests that

the total kinetic energy will not increase if one employs
the exact energy-dependent operator ÛU instead of the
approximation ÛU ¼ ÎI . What actually happens in such a
case is a decrease in the total potential energy. Let us
assume that the exact solution, Y, of Eq. (8) is known.
With the help of Eqs. (6) and (10) and the hermiticity of
the operator rÆp, Eq. (8) can be rewritten in the form of
Eq. (12),

ðT̂T þ V ÞW þ 1

4m2c2
ðr � pÞ

	 Vw2 � 2mc2ð1� wÞ2 þ Eð1� w2Þ
h i

ðr � pÞW

¼ E 1þ T̂T
2mc2

� �
W ; ð12Þ

which is similar in its appearance to Eq. (11). In
Eq. (12), w denotes the prefactor on the right-hand side
(rhs) of Eq. (8): w ¼ [1 + (E)V)/(2mc2)])1. The term in
brackets in Eq. (12) can be considered as an effective
(energy-dependent) potential (EP), Veff, which after little
algebra is given by Eq. (13):

Veff ¼ Vwþ Eð1� wÞ ¼
V þ E ðE�V Þ

2mc2

1þ ðE�V Þ
2mc2

: ð13Þ

Despite the similarity between Eqs. (11) and (12), the
latter is exact and contains beside LO also high-order
relativistic corrections hidden in the EP (Eq. 13).
Using for E the Dirac eigenenergy for the 1s1/2

orbital, E1S1=2 ¼ c2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z2=c2 � 1

p	 

, a simple numeric

analysis of Eq. (13) reveals the following:

1. At large distances from the nucleus, Veff is virtually
identical to the Coulomb potential –Z/r.

2. At short distances from the nucleus, Veff is consider-
ably less negative than –Z/r and possesses a cusp
rather than a singularity at the nucleus.

3. Veff starts to deviate markedly from –Z/r already
at distances of the order of Z/(mc2) [Z times the
Thomson radius of the electron, rT ¼ 1/(mc2)].

This is illustrated in Fig. 1 for Z ¼ 96 (the highest
atomic number used in test calculations with the
LO-NESC in Ref. [19]).
These findings help to understand why the use of

potential V even for a nucleus with finite size possessing
the experimentally determined radius does not prevent
variational collapse of the LO-NESC [19]. The experi-
mental nuclear radii are several orders of magnitude
shorter [23] than the Thomson radius of the electron.
Figure 1 illustrates that the LO-NESC with ÛU ¼ ÎI
breaks down at distances shorter than Z/(mc2). At such
distances the potential V in Eq. (8) cannot be considered
to be weak and the full energy-dependent operator
ÛU must be used to regularize the singular Coulomb
potential.
However, Eqs. (12) and (13) suggest a simple remedy

for the variational collapse of Eq. (11). It should be
possible to restore the variational stability of the LO-
NESC by using a potential V¢, which is regular close to
the nucleus, in the third term on the lhs of Eq. (11). Such
a potential, like Veff in Eq. (12), will introduce higher-
order relativistic corrections into Eq. (11), albeit in an
implicit manner. A reasonable choice for such an EP is
the potential of a finite nucleus with an effective ‘‘radius’’
of approximately Z/(mc2) (see Appendix). Among
the various potentials currently in use, the potential
of the Gaussian charge distribution, qG ¼ Zr�30 p�3=2

expð�r2=r20Þ seems to be the most appealing, owing to
the simplicity of its implementation within existing
quantum-chemical computer codes [23]. According to
Eq. (14), the EP can be factorized into the potential of a

Fig. 1. Comparison of the effective potential from Eq. (13) with
the Coulomb potential for Z ¼ 96 (see text for details). The straight
vertical line indicates the position of the cutoff radius, r0 ¼ Z=ðmc2Þ
for Z ¼ 96
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point-charge nucleus and the energy-independent cutoff
factor:

V 0ðrÞ ¼ � Zn
r
erfðr=r0Þ : ð14Þ

The cutoff radius, r0, in the error function is of the
order of the Thomson radius, i.e., Z/(mc2). Equa-
tion (14) eliminates the excess in nuclear–electron at-
traction close to the nucleus and, therefore, we propose
its use in the third term on the lhs of Eq. (11).
In many-electron Hartree–Fock (HF) calculations the

total potential, V, consists of the nuclear–electron
attraction potential, Vne, and the electron–electron
interaction potential, Vee. Thus, in the final form, the
proposed one-electron equations take the form of
Eq. (15):

T̂TþVneþVeeþ
1

4m2c2
ðr�pÞV 0

neðr�pÞþ
1

4m2c2
ðr�pÞVeeðr�pÞ

� �
/i

¼ei 1þ T̂T
2mc2

� �
/i : ð15Þ

In Eq. (15), /i is the one-electron, two-component
orbital (spinor), and ei is the corresponding eigenvalue.
The orbitals /i are normalized by Eq. (16):

/j 1þ
T̂T

2mc2

����
����/i

� 

¼ dij : ð16Þ

The modified nuclear-electron attraction potential,
V¢ne, in the fourth term on the lhs of Eq. (14) is calcu-
lated by Eq. (17),

V 0
neðr1Þ ¼

Xall n
n

� Zn
r1n
erf r1n=r0ðZnÞ½ � ; ð17Þ

where r0(Zn) is a cutoff radius specific for the nth nucleus
and r1n ¼ |r1)rn| is the distance between the nth nucleus
and the electron position given by radius vector r1.
The total HF energy is then given by Eq. (18),

Etot ¼
Xocc
i

/i T̂T þ Vne
�� ��/i

� �

þ 1

4m2c2
Xocc
i

/i ðr � pÞV 0
neðr � pÞ

�� ��/i

� �
þ Eee;

ð18Þ

where Eee is the HF electron–electron interaction
energy. The HF Eee and Vee are calculated in the usual
way but with the electron-repulsion integrals (lm|ks)
given in Eq. (12) of Ref. [19]. It is obvious that
Eq. (115) may be obtained from Eq. (18) by variation
of E with respect to orbitals /i under the orthonormality
constraint (Eq. 16).

2.2 Variational stability, boundedness from below,
and gauge invariance

The problem of the variational stability of Eq. (15) is
studied along the same lines as in Refs. [12, 19]. First,
the dependence of the expectation value of the energy

calculated with a single s-type Gaussian trial wavefunc-
tion on an exponential parameter, a, is examined for
a one-electron atom with Z ¼ 96. The results obtained
with Eq. (15), the Dirac equation (Eqs. 1, 2), the
Schrödinger equation, and with the NESC U=I method
[19] are presented in Fig. 2. In connection with Eq. (15),
the cutoff radius r0 in the EP (Eq. 17) was chosen to be

r0 Zð Þ ¼ Z
mc2

: ð19Þ

A comparison of the NESC U=I curve with that
obtained from Eq. (15) reveals that the use of a modified
potential in the fourth term on the lhs of Eq. (15) helps
indeed to restore the variational stability. The curve
based on Eq. (15) has a single minimum and as the ex-
ponential parameter a increases to infinity the energy
increases to a large positive constant with limiting value
2mc2(1)p)1/2).
Equation (15) is bounded from below for a hydrogen-

like potential even when using a singular trial wave-
function of the form

w ¼ Nr�a exp �frð Þ; a > 0 : ð20Þ

A lower bound for the energy (Eq. 18) does exist
provided the cutoff radius r0 satisfies Eq. (A6) derived in
the Appendix. The condition expressed by Eq. (A6) will
be violated if the potential in Eq. (17) in the relativistic
correction to the Hamiltonian belongs to a finite nucleus
with the effective radius r0 determined from experimen-
tal data. This explains why the variational collapse oc-
curs in numeric simulations with the original LO-NESC
method [19]. By using Eq. (19) for the actual choice of
the cutoff radius, the condition in Eq. (A6) is satisfied
and the energy possesses a lower bound for any finite
nuclear charge, Z.

Fig. 2. Energy (in hartree) from Eq. (15), normalized elimination
of the small component (NESC U=I), nonrelativistic (NR), and
Dirac one-particle equations with a point nucleus and a single
Gaussian trial wavefunction (see text for details)
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Before turning to the numeric performance of
Eq. (15), a comment on its gauge invariance is appro-
priate. The gauge invariance requires that when the
potential in one-electron equations is shifted by a con-
stant value, the orbital energies must automatically be
shifted by the same value. An inspection of Eq. (15)
suggests that the use of different potentials, Vne and V¢ne,
may result in breaking the gauge invariance. This does
not concern the trivial situation when both Vne and V¢ne
are shifted by the same constant D. In such a case ei will
be shifted by precisely the same value. A more serious
situation will arise if two nuclei k and l approach each
other closely. Then, for nucleus k the tail of the potential
of nucleus l may approximately be considered as a
constant shift of the potential of nucleus k. Since Vne
and V¢ne are different, both potentials will be shifted
differently at nucleus k, namely by Dne~)Zl/rkl and
D0
ne 
 �Zl=rklerf �rkl=r0 Zlð Þ½ �, respectively. This will re-

sult in the shift in the orbital energy being different from
both Dne and D¢ne. In principle, this may lead to serious
problems when describing chemical bonding [13]. How-
ever, beyond a short distance r0 from a given nucleus
both potentials Vne and V¢ne become identical. The cutoff
radius r0 in the error function of Eq. (17) is about
3 orders of magnitude shorter (r0~10)3 bohr) than the
length of normal chemical bonds. Thus, given that
rkl»r0(Zl) both shifts, Dne and D¢ne will be identical.
Consequently, the orbital energy shift will be the same
as Dne as is obvious from Eq. (15). This shows that
in chemically relevant situations Eq. (15) should not
experience any problems with gauge invariance.

3 Results

The performance of the proposed method was tested in
calculations on one-, two-, and many-electron atoms.
First, calculations for hydrogen-like atomic ions were
carried out to obtain a numerically accurate estimate for
the eigenvalues and eigenvectors of Eq. (15). These
calculations employed a basis set of 62 s-type Gaussian
functions with exponential parameters ai ¼ Z2a0i, where
a¢i=8·10)8, 1·10)7, 2·10)7, 4·10)7,..., 8·107, 1·108 [9].
Further extension of this basis set even for an atomic ion
with Z=100 changes the total energy of the 1s1/2 state by
about 10)6 hartree; hence, the eigenvalues obtained can

be considered as sufficiently accurate and can be com-
pared with the exact eigenvalues of the Dirac equation.
The relativistic energy corrections DErel=Erel)Enonrel

calculated for the 1s1/2 states of hydrogen-like atomic
ions with Z up to 100 are compared in Fig. 3 with the
exact values obtained analytically from the Dirac equa-
tion. Some of these data are given in numeric form in
Table 1. The Pauli approximation (which employs the
nonrelativistic wavefunction) and ZORA are used for
comparison. For the ZORA method, which is becoming
currently very popular in quasi-relativistic calculations
on chemical systems [24], the exact analytic expression
for the energy of a hydrogen-like atomic ion is available
from the literature [12], while for the Pauli approxima-
tion the energy can be calculated directly with the use of
the nonrelativistic wavefunction.

Fig. 3. Relativistic energy correction, DErel, from the Dirac one-
particle equation (solid line) versus energies from a the zero-order
regular approximation, b the Pauli approximation, c Eq. (15) with
r0 from Eq. (19), and d Eq. (15) with r0 from Eq. (21) for hydrogen-
like atomic ions (see text for details)

Table 1. Relativistic energy
corrections DErel = Erel)Enonrel
(hartree) calculated for hydro-
gen-like atomic ions. Zero-order
regular approximation (ZORA)

Z Diraca This workb This workc ZORAd Paulie

1 )0.000007 )0.000007 )0.000007 )0.000013 )0.000007
2 )0.000107 )0.000106 )0.000106 )0.000213 )0.000107
10 )0.066742 )0.067209 )0.066658 )0.133573 )0.066565
18 )0.704858 )0.720737 )0.703330 )1.412783 )0.698774
30 )5.524907 )5.869657 )5.509816 )11.117647 )5.391777
50 )44.626156 )51.035381 )44.529248 )90.845507 )41.603215
80 )332.192151 )352.886460 )332.556077 )698.869184 )272.650833
100 )939.195384 )722.200147 )933.502135 )2054.808363 )665.651443
a Dirac equation [21]
b Equation (15) with r0 from Eq. (19)
c Eq. (15) with r0 from Eq. (21)
d ZORA energies calculated with formulae from Ref. [12]
e Energies in the Pauli approximation calculated with the nonrelativistic wavefunctions
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The data in Fig. 3 show that the ZORA systemati-
cally overestimates (yields too negative) relativistic cor-
rections to the energy, while the Pauli approximation
systematically underestimates them. Equation (15) with
r0 from Eq. (19) yields energies either above or below the
Dirac reference values. The relativistic energy correction
from Eq. (15) is overestimated for lower atomic numbers
and underestimated for higher atomic numbers. An
obvious reason for the discrepancy is that the shape of
EP (Eq. 17) does not match the shape of the potential in
Eq. (13) for all atomic numbers. A simple way of cir-
cumventing the problem is to parameterize the cutoff
radius with the help of the 1s1/2 eigenvalues of the Dirac
equation for hydrogen-like atomic ions. Such a proce-
dure is well defined because a large number of reference
data are available. The regularity of the deviation of the
calculated energies from the reference values suggests
that a simple polynomial dependence of r0 on Z should
be sufficient. By employing only the three parameters a0,
a1, and a2 in Eq. (21),

r0 Zð Þ¼ a0þa1Z�1þa2Z�2� � Z
mc2

;

a0¼�0:263188;a1¼106:016974;a2¼138:985999;
ð21Þ

the agreement with Dirac energies is considerably
improved for the whole range of nuclear charges
(Z=1)100). This is exemplified in the fourth column
of Table 1 and in Fig. 3d. Equation (15) without fitting
of the cutoff radius describes the relativistic corrections,
DErel, for hydrogen-like atomic ions (Z=1)100) with
an average relative error of 8.8%, which has to be
compared to 133.3% for ZORA and 9.5% for the Pauli
approximation. The use of Eq. (21) reduces the error to
0.2% (standard deviation: 0.13%).
When using Eq. (21), care has to be taken so that

the cutoff radius does not fall below the limit imposed
in Eq. (A6). Thus, for Z ‡ 132 the prefactor in
Eq. (21) should be set to a constant, which complies
with Eq. (A6). A parameterization of r0 with respect
to Z helps to avoid the use of complicated operators
in the quasi-relativistic Hamiltonian without losing
accuracy. It serves well the actual objective of this
work, namely to establish a quasi-relativistic approach
for the investigation of large molecules. Hence,
Eq. (21) is used in connection with Eq. (15) in all
following calculations.

In the case of many-electron atoms, the calculations
with Eq. (15) were done first for Helium-like ions up to
Z=100. The same basis set containing 62 s-typeGaussian
functions was employed. The results in Table 2 indicate a
reasonable performance of the proposed method for the
ground states of two-electron ions. It has to be noted that
the reference data from the literature [25, 26, 27] were
obtained by employing the potential of a finite nucleus.
Usually, calculations with a point-charge nucleus yield
lower energies thanwith a finite-size nucleus (e.g. by about
8 hartree for hydrogen-like uranium) [23].
The straightforward use of Eq. (15) in calculations on

many-electron systems may not result in a considerable
mitigation of computational effort. One still has
to compute a large multitude of additional electron-
repulsion integrals when calculating Vee [15, 19]. Such
calculations can be as tedious as the four-index trans-
formation of electron-repulsion integrals with the
energy-dependent operator ÛU , which is avoided in
Eq. (15). Thus, to benefit from the advantages of
Eq. (15) one needs to simplify the calculation of the
electron repulsion term.
An obvious simplification results from a renormal-

ization of the one-electron part, H1, of the quasi-rela-
tivistic Hamiltonian in Eq. (15) on the nonrelativistic
metric and the use of the so-obtained one-electron quasi-
relativistic Hamiltonian, H¢1, within the standard non-
relativistic HF approach. As the quasi-relativistic metric
in Eq. (15) is energy-independent, the renormalization
can be done before the self-consistent-field procedure at
negligible computational expense.

H0
1 ¼ S1=2

	 
y
X�1=2

	 
y
H1 X�1=2

	 

S1=2

	 

; ð22Þ

Xlm ¼ vl 1þ
T̂T

2mc2

����
����vm

� 

; ð23Þ

H1ð Þlm¼ vl T̂T þ Vne þ
1

4m2c2
r � pð ÞV 0

ne r � pð Þ
����

����vm

� 

: ð24Þ

In Eqs. (22), (23), and (24), which give the renor-
malization of the one-electron part of the Hamiltonian
in matrix form, vm are the basis functions used to expand
the one-electron orbitals and S is the matrix of the
overlap integrals. It is worth noting that the matrix
elements (H1)lm can be expressed entirely in terms of the

Table 2. Energies of helium-
like atomic ions (hartree).
Dirac–Hartree–Fock (DHF),
variational DHF (VDHF)

Z This work
Eq. (15)a

This work
Eqs. (22),
(23), (24)a

VDHFb DHFc DHFd

2 )2.861813 )2.861795 )2.861813 )2.861812
10 )93.982590 )93.979233 )93.982799 )93.982695 )93.979479
18 )314.196764 )314.175955 )314.200163
30 )892.038906 )891.935363 )892.065286 )892.051699
50 )2,556.179995 )2,555.620945 )2,556.310106 )2,556.278645
80 )7,005.996649 )7,002.618418 )7,002.382844
100 )11,780.427281 )11,770.216583 )11,763.908443
a Present work, r0 from Eq. (21)
b From Ref. [25]
c 14s10p8d7f6g5h4i basis set of G spinors [26]
d Basis set of B splines [27]
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molecular integrals employed in the nonrelativistic HF
calculation [23].
The results of the calculations on helium-like atomic

ions utilizing Eqs. (22), (23), and (24) are presented in
the third column of Table 2. Such calculations are a
stringent test of the performance of Eqs. (22), (23), and
(24) because the relativistic correction to the electron-
repulsion energy is largest for 1s electrons and any in-
efficient approximation will have a dramatic effect on it.
As Table 2 exemplifies, the use of Eqs. (22), (23), and
(24) leads to an acceptably small shift in the total energy,
for example, 0.08% (about 10 hartree) for Z=100.
Thus, the renormalization on the nonrelativistic metric
which is also used in some other quasi-relativistic
schemes [9, 14] has a small effect on the total energy.
However, if one needs properties other than energy, the
one-electron orbitals obtained with Eqs. (22), (23), and
(24) must be renormalized back to the quasi-relativistic
normalization (Eq. 16).
The calculation of the Ag and Au atoms in their 2S

ground states is a standard test used when assessing the
reliability of approximate relativistic schemes [9, 10, 14,
17, 18]. For these atoms, the results of numeric DHF
calculations are available [28] along with the results of
DHF calculations using basis sets [14]. In the calcula-
tions of these atoms, Eqs. (22), (23), and (24) in
connection with the scalar relativistic approximation [9,
10, 14, 20] were used. This approximation implies the
elimination of all spin-dependent relativistic corrections
with the help of the Dirac relation (Eq. 25):

r � að Þ r � bð Þ ¼ a � bþ ir � a	 bð Þ: ð25Þ
For the two atoms Ag and Au, spin–orbit coupling

was neglected because it plays a minor role in these cases
and its neglect simplifies the calculations. We note
however that spin–orbit coupling can be included into

Eqs. (22), (23), and (24) because there is no danger of a
variational collapse.
The calculations on Ag and Au employed the fully

uncontracted (17s12p8d) and (19s14p10d5f) basis sets of
Gropen [29]. The results of quasi-relativistic HF calcula-
tions based on Eqs. (22), (23), and (24) are compared with
the available data from DHF [14, 28] and DKH [9, 10]
calculations in Table 3. It has to be noted that the DHF
calculations employed the potential of a finite nucleus,
whereas the calculations using Eqs. (22), (23), and (24)
were done with the point nucleus. Nevertheless, the total
atomic energies obtained with Eqs. (22), (23), and (24) are
in reasonable agreement with the DHF results.
For the Au atom, Eqs. (22), (23), and (24) yield a

somewhat lower total energy than either the numeric
DHF or the finite-basis DHF results. This discrepancy
has nothing to do with the variational collapse. Thus, an
extension of the basis set for Au with eight tight s-type
functions in an even-tempered sequence with a ratio of
2.5 results in an energy lowering of just 0.02 hartree.
Overestimation of the total energy of Au is probably due
to the too low energies of the ns orbitals for n ‡ 2
(Table 3). For the 2s orbital of Au, the energy from
Eqs. (22), (23), and (24) is 13 hartree lower than from
the numeric DHF calculation. This is too much for an
orbital energy lowering owing to the use of a point nu-
cleus [23]. Most likely, it is the shape of the EP (Eq. 17)
which is responsible for the 2s orbital energy. This po-
tential seems to be too ‘‘broad’’ compared to the exact
potential (Eq. 13). The EP was fitted via the cutoff ra-
dius (Eq. 21) to reproduce the energies of the 1s orbitals,
whereas this fit procedure may be less precise for higher
orbitals.
It is quite unlikely that such an overestimation may

affect the energies of the valence electrons. Indeed, the
orbital energies of the valence electrons of both Ag and

Table 3. Relativistic orbital energies (hartree) for Ag(2S) and Au(2S). Douglas–Kroll–Hess (DKH)

Orbital Ag Au

This work DKHa DHFb This work DKHa DHFb

1s )942.4406 )941.9533 )943.1578 )2,980.2372 )2,975.8754 )2,986.1300
2s )142.2593 )141.8774 )141.9930 )545.6464 )531.5596 )532.1880
3s )27.4193 )27.6373 )27.3849 )131.9093 )128.0912 )128.0890
4s )4.2507 )4.2721 )4.2746 )30.0701 )29.1120 )29.1399
5s )0.2247 )0.2372 )0.2814 )4.8008 )4.6965 )4.6845
6s )0.2780 )0.2953 )0.2917
2p )127.1187 )127.0986 )127.2137 )462.3847 )462.2013 )464.2292
3p )22.3445 )22.3736 )22.3896 )107.5593 )107.4376 )107.7708
4p )2.7049 )2.7441 )2.7465 )22.1610 )22.1773 )22.2917
5p )2.6781 )2.7646 )2.7691
3d )14.4300 )14.4784 )14.4793 )83.6981 )84.3164 )84.0260
4d )0.4784 )0.5112 )0.5113 )13.2774 )13.3317 )13.4501
5d )0.3777 )0.4506 )0.4547

)3.6059 )3.7448 )3.7838
Total atomic
energy (hartree)

)5,314.69 )5,311.59 )5,310.66 )19,071.54 )18,986.88 )19,011.30

Ionization
potential (eV)

6.07 6.29c )5,314.51d

6.34c
7.48 )19,036.70d

a DKH results [9, 10]
b Numeric DHF results [28] unless noted otherwise. p-, d-, and f-orbital energies are averaged over spin–orbit components
c From Ref. [9]
d Finite-basis set DHF results from Ref. [14]
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Au are in reasonable agreement with numeric DHF re-
sults. Because the basis sets employed are of moderate
size, the valence orbital energies are affected by the
incompleteness of the basis sets in the valence region.
Thus, an extension of the basis sets by three even-tem-
pered diffuse d-type functions leads to 5d orbital energies
of )0.5097 hartree for Ag and of )0.4443 hartree for
Au, which are considerably improved relative to the
orbital energies reported in Table 3. The corresponding
total energy is lowered by just 0.03 hartree for Ag and
by 0.08 hartree for Au.
The quasi-relativistic method developed in the pre-

sent work is based on a LO approximation to the exact
relativistic Hamiltonian. An argument in favor of the
present method is that it is variationally stable (which is
not true for the Pauli approximation) and, accordingly,
can be used within a quasi-variational procedure for
obtaining the relativistic energy and wavefunction. This
simplifies considerably the calculation of molecular ge-
ometries, frequencies, and other properties, in particular
when they can be expressed as expectation values. Any
perturbational approach is far less efficient in this respect
as it has to revert to the calculation of response prop-
erties.
The proposed method, which is dubbed the LO-

NESC-EP, performs better than the Pauli approxima-
tion. This is documented by the data in Tables 4 and 5.
There, relativistic energy corrections to absolute and
relative molecular energies as obtained with Eqs. (22),
(23), and (24) within the HF approximation for a
number of molecules containing first- and second-row
elements are compared with the corresponding DHF
values. Tarczay et al. [30] studied the same molecules
within the Pauli approximation including either just
one-electron (MVD1) or, alternatively, one- and two-
electron terms (MVD2). Since the molecules studied
(Tables 4, 5) contain only light elements, a comparison
with the results from the perturbational approaches
MVD1 and MVD2 is justified.
Figure 4 gives a graphical analysis of the calculated

deviations from the DHF data [30] with regard to

absolute relativistic corrections (Fig. 4a, Table 4) and
with regard to the calculated energy barriers to rotation
(C2H6), linearity (H2O, H2S, HNCO), inversion (NH3,
SiH�

3 , isomerization (HCN), and cyclization (SiC2)
(Fig. 4b, Table 5). The molecular structures and the re-
sults of the MVD1, MVD2, and DHF calculations were
taken from Ref. [30]. The uncontracted cc-pCVDZ basis
set [31] was used for the first-row elements and the un-
contracted cc-pVDZ basis [31] augmented with tight d
and f functions as suggested in Ref. [30] was employed
for the second-row elements.
Figure 4 reveals that the LO-NESC-EP relative to

MVD1 reduces the relative error in the relativistic energy
corrections more than twice, both for absolute energies
[average relative errors: 2.8% (LO-NESC-EP), 6.1%
(MVD1), and 0.3% (MVD2)] and for reaction barriers
[average relative errors: 5.2% (LO-NESC-EP), 12.1%
(MVD1), and 7.2% (MVD2)]. Because the use of
Eqs. (22), (23), and (24) just requires the inclusion of
one-electron relativistic terms, an improvement relative
to the traditional one-electron approximation is obvious.
Although the LO-NESC-EP relativistic corrections to
the total molecular energy are inferior to MVD2, the
energy differences (reaction barriers) are of essentially
the same quality as from MVD2; thus, the missing two-
electron terms do not affect the chemically relevant
properties as obtained with the use of Eqs. (22), (23),
and (24). It should be noted, however, that the magni-
tude of the two-electron relativistic terms neglected in
Eqs. (22), (23), and (24) is not identical to the difference
MVD2)MVD1. The results in Table 2 suggest that for
light elements the energetic effect of the neglected two-
electron terms is about 30% smaller than the magnitude
of the two-electron Darwin correction [30].

4 Conclusions

In this work we have shown that by a slight modifica-
tion, the LO-NESC (NESC U=I) [19] can be converted
into a variationally stable method. The modification is

Table 4. Relativistic energy corrections (mhartree) to total energies
of selected molecules as obtained at the Hartree–Fock level of
theory. The molecular structures are taken from Ref. [30]. The
uncontracted cc-pCVDZ basis set is used for first-row elements and
the uncontracted cc-pVDZ basis modified as described in Ref. [30]
for Si and S

Molecule This work MVD1b MVD2c DHFd

C2H6 )30.397 )29.175 )31.831 )31.853
NH3 )29.772 )28.697 )30.895 )30.926
H2O )53.281 )51.499 )54.902 )54.980
HCN )45.333 )43.634 )47.158 )47.200
HNCO )98.529 )95.039 )101.955 )102.074
SiH3

) )616.46 )599.72 )621.60 )624.59
SiC2 )647.92 )629.42 )645.46 )657.48
H2S )1,104.71 )1,075.44 )1,109.55 )1,116.56
a Sum of one-electron mass-velocity and Darwin corrections as
calculated in Ref. [30]
b Sum of one-electron mass-velocity and one- and two-electron
Darwin corrections as calculated in Ref. [30]
c DHF energies as calculated in Ref. [30]

Table 5. Relativistic energy corrections (cm)1) to barriers of
selected molecules as obtained at the Hartree–Fock level of theory.
See legend to Table 4

Molecule This work MVD1 MVD2 DHF

C2H6
a 0.58 0.52 0.58 0.57

NH3
b 23.64 22.98 24.21 24.26

H2O
c 60.92 59.50 62.32 62.50

HCNd 15.69 15.36 15.78 15.69
NÆÆÆHÆÆÆCe )32.68 )31.41 )33.10 )33.31
HNCOf 33.00 31.95 33.69 33.85
SiH3�b 106.3 102.9 105.6 104.5
SiC2

g )2.1 )1.0 )1.2 )3.5
H2S

c 233.3 227.3 232.6 234.8

a Barrier to rotation
b Barrier to inversion
c Barrier to linearity
d HCN)HNC isomerization energy
e Barrier to HCN–HNC isomerization
f Barrier to cis–trans isomerization
g Energy difference between linear Si)C)C and the triangular form
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physically motivated and involves the use of a cutoff
factor in the relativistic correction to the nuclear–
electron attraction term. As shown in Sect. 2, the
relativistic correction to the nuclear attraction potential
behaves regularly near the nucleus in case of the exact
NESC [15] scheme. In the approximate scheme proposed
here, this effect is modeled by an energy-independent
cutoff factor which regularizes the bare nuclear potential
at distances shorter than r~Z/(mc2). The LO-NESC-EP
approach possesses the following advantages:

1. The LO-NESC-EP is variationally stable. This is
verified by a theoretical analysis in Sect. 2 and the
Appendix and by numeric results in Sects. 2 and 3.

2. The LO-NESC-EP employs the energy-independent
quasi-relativistic metric which simplifies considerably
the calculation of the two-electron terms in the
Hamiltonian.

3. The LO-NESC-EP provides an accurate description
of the relativistic correction to the total energy for
atomic and molecular systems as exemplified by the
numeric results for hydrogen-like and helium-like
atomic ions with Z up to 100, the results for Ag and
Au atoms in their ground states, and the results of
molecular calculations (see also Ref. [32]).

4. The Hamiltonian operator of the LO-NESC-EP does
not contain any unusual terms which do not appear
in the nonrelativistic Hamiltonian. All integrals in the
LO-NESC-EP Hamiltonian matrix can be evaluated
analytically using the existing nonrelativistic soft-
ware.

Because of the latter feature, the LO-NESC-EP can
be easily installed within any existing nonrelativistic
quantum-chemical computer program. In this respect, it

represents a useful starting basis for the ultimate goal of
our research, namely

1. Setting up the LO-NESC-EP for density functional
theory (DFT) to calculate molecular energies for
larger molecular systems [32].

2. Developing for the resulting DFT method analytical
energy gradients to calculate routinely molecular
geometries.

3. Adding the spin–orbit coupling correction to the
quasi-relativistic corrections described in this work.

4. Extending the DFT LO-NESC-EP for the calculation
of relativistically corrected NMR chemical shifts.

5. Merging the approach with empirical methods within
a generally applicable quantum mechanical/molecu-
lar mechanics program.

Although a genuine relativistic method will guarantee
higher accuracy, the present method seems to us better
suited to investigate the potential-energy surfaces, ther-
modynamic properties, and spectroscopic characteristics
of large molecular systems containing heavy atoms, in
particular those of biochemical interest. Although some
of these goals are feasible within the effective core po-
tential approach [33], the calculation of magnetic prop-
erties that depend on the core electrons can only be
carried out if relativistic corrections are explicitly con-
sidered in the all-electron Hamiltonian. The application
of the LO-NESC-EP to molecular calculations is con-
sidered elsewhere [32].
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Swedish Natural Science Research Council. Calculations were done
on the supercomputers of the Nationellt Superdatorcentrum,
Linköping, Sweden.

Appendix

The potential of a uniformly charged sphere of radius r0
is given by Eq. (A1):

Fig. 4. Relative percentage error in the calculated relativistic
corrections a to the total energy and b to the reaction barriers for
selected molecular systems. See text and Tables 4 and 5 for more
details
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V 0
ne rð Þ ¼ � Z

2r0
3� r

r0

	 
2� �
r � r0

� Z
r r > r0

8<
: ðA1Þ

Using Eq. (A1) the expectation value of the Hamil-
tonian (Eq. 15) can be expressed as

ĤH
� �

¼ U T þ Vne þ
1

4m2c2
r � pð ÞV 0

ne r � pð Þ
����

����U
� 


¼ r � pð ÞU 1

2m
þ 1

4m2c2
V 0
ne

����
���� r � pð ÞU

� 

þ U Vnej jUh i ;

ðA2Þ
where the hermiticity of the kinetic energy operator
(Eq. 46) and the rÆp operator was used. Substituting
Eq. (A1) into Eq. (A2) one obtains

ĤH
� �

¼
Z

r�r0

r�pð ÞUj j2 1

2m
� 3Z
8m2c2

1

r0

� �
drþ

Z
r�r0

Uj j2Vnedr

þ
Z

r�r0

r�pð ÞUj j2 Z
8m2c2

r2

r30
dr

þ
Z

r>r0

r�pð ÞUj j2 1

2m
� 1

4m2c2
Z
r

� �
dr

þ
Z

r>r0

Uj j2Vnedr: ðA3Þ

The integration limits r £ r0 and r > r0 indicate
whether the integration is performed within the sphere of
radius r0 or outside the sphere, respectively.

Provided that a trial function F falls off exponentially
as rfi¥, integration outside the sphere leads to a finite
value. As for the three integrations inside the sphere (first,
second, and third term on the rhs of Eq. A3), only the first
and the second integrals can adopt negative values. The
second integral is always negative as it represents the po-
tential-energy contribution, while the first integral will
become negative if the term in parentheses is negative.
With nonsingular trial function, for example, of Gaussian
or Slater type, the first integral in Eq. (A3) is proportional
to the square of an exponential parameter; hence, this
integral can be made infinitely negative with an appro-
priate choice of the exponential parameter provided that
the term in parentheses is negative. If the trial function is
singular, for example, of type expressed in Eq. (20), the
integrand in the first integral in Eq. (A3) is more singular
than the integrand in the second term. Thus, this integral
will diverge faster than the potential-energy contribution
as the trial function will become more and more singular.
Consequently, in order to guarantee the lower bound for
the Hamiltonian expectation value ĤH

� �
, the integrand in

the first integral in Eq. (A3) must always be positive. This
leads to Eq. (A4) for the cutoff radius, r0:

r0 >
3

4

Z
mc2

: ðA4Þ

Provided the cutoff radius fulfills this condition, the
expectation value of the quasi-relativistic Hamiltonian
with the potential in Eq. (A1) is limited from below.
If the potential in Eq. (14) of a Gaussian charge

distribution is used for V¢ne, the limiting value of the
cutoff radius, which provides a lower bound for ĤH

� �
,

can be obtained from Eq. (A4) considering that in the
vicinity of the nucleus the potential in Eq. (14) behaves
approximately as in Eq. (A5):

V r ! 0ð Þ � � 2ffiffiffi
p

p Z
r0

1� 1

3

r
r0

� �2
" #

: ðA5Þ

By using Eq. (A5) instead of Eq. (A1) in the first term
in Eq.(A3), Eq. (A6) is obtained,

r0 >
1ffiffiffi
p

p Z
mc2

; ðA6Þ

which guarantees the existence of a lower bound of the
Hamiltonian in Eq. (15). The essence of Eqs. (A4) and
(A6) can be given by Eq. (A7):

V 0
ne 0ð Þ > �2mc2 : ðA7Þ

It is interesting to note that Eq. (A7) guarantees
positive definiteness of the total energy defined by
Eq. (15) when the orbital exponent f in Eq. (20) ap-
proaches infinity. This conclusion can be inferred from
the scaling transformation rfikr applied to the energy
expectation value, which yields the energy as a function
of the scaling parameter k:

As the coordinate scaling parameter k approaches
infinity, the trial wavefunction (Eq. 20) collapses to-
wards the nucleus. Requiring the positive definiteness of
E(kfi¥) yields Eq. (A7) for an admissible potential V¢ne.
This conclusion is supported by the asymptotic behavior
of the energy expectation value calculated with the trial
function in Eq. (20). Using the potential in Eq. (A1)
with the cutoff radius from Eq. (19) one has
limf!1 E ¼ 1

2mc
2.
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